Preconditioners for the dual-primal FETI methods on nonmatching grids: Numerical study
نویسندگان
چکیده
منابع مشابه
Preconditioners for the dual-primal FETI methods on nonmatching grids: Numerical study
FETI-DP method is a substructuring method that uses Lagrange multipliers to match the continuity condition on the subdomain boundaries. For the FETI-DP method on nonmatching grids, two different formulations are known with respect to how to employ the mortar matching condition. Keeping step with the developments of the FETI-DP methods, a variety of preconditioners for the FETI-DP operator have ...
متن کاملPreconditioners for the Dual - Primal FETI
K e y w o r d s F E T I D P , ~Ionmatching grids, Mortar matching condition, Preconditioner. 1. I N T R O D U C T I O N The finite-element tearing and interconnecting (FETI) method is one of the substructuring methods, which was first introduced by Farhat and Roux [3]. The main idea is to match the continuity condition across subdomain boundaries by Lagrange multipliers. By eliminating primal v...
متن کاملDual-primal Feti Methods for Linear Elasticity
Dual-Primal FETI methods are nonoverlapping domain decomposition methods where some of the continuity constraints across subdomain boundaries are required to hold throughout the iterations, as in primal iterative substructuring methods, while most of the constraints are enforced by Lagrange multipliers, as in one-level FETI methods. The purpose of this article is to develop strategies for selec...
متن کاملDual-Primal FETI Method
The FETI algorithms are numerically scalable iterative domain decomposition methods. These methods are well documented for solving equations arising from the Finite Element discretization of second or fourth order elasticity problems. The one level FETI method equipped with the Dirichlet preconditioner was shown to be numerically scalable for second order elasticity problems while the two level...
متن کاملA FETI-DP Formulation for Two-dimensional Stokes Problem on Nonmatching Grids
We consider a FETI-DP formulation of the Stokes problem with mortar methods. To solve the Stokes problem correctly and efficiently, redundant continuity constraints are introduced. Lagrange multipliers corresponding to the redundant constraints are treated as primal variables in the FETI-DP formulation. We propose a preconditioner for the FETI-DP operator and show that the condition number of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2006
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2006.03.008